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ABSTRACT

A coupling coefficient is characterized in the time
domain instead of the frequency domain commonly
employed. The FDTD method is well suited to its time
domain calculation, resulting in a fast and simple
procedure. Various techniques unique to time-domain
calculation is explained with practical examples.

INTRODUCTION

A coupling constant between two resonators is one
of the most important parameters for designing a band-
pass filter. Though it has usually been calculated by
the even and odd mode frequency of a coupled
resonator (2 it is analytically obtained only for
simple structures. Thus, the FDTD method, which is

extensively used for the electromagnetic wave analysis, absorbing boundary

could be applied to find it. The procedure to obtain the
coupling coefficient looks straightforward ; one

propagaling waves, respectively. Thus, the coupling
coefficient is defined by the ratio of the period for the
self-oscillation and energy transfer &l as
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First, we take an example shown in Fig.1 and
calculate the coupling coefficient by a conventional
FDTD procedure. Mur’s 1st order absorbing boundary
is introduced for each terminal. A Gaussian pulse
H, =exp[-(At-n—3T)/T?) (3)
is applied at a terminal, where At=4.81 pS and 7=12.49
pS. The response E, at the other terminal is drawn in
Fig.2 (a) and its Fourier transform is in (b),
respectively. The obtained coupling coefficient is
shown in Table.1 as well as the cpu time.

absorbing boundary
1 /excitation (H) observation (E,)
P

assumes a system of coupled resonators with I/O ports

and excites the input port by a Gaussian pulse. The p

output response is Fourier-transformed and two

resonant frequencies are found to put in

k= M (1)
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But we should make use of the advantage of time
domain calculation as long as we rely on the FDTD
method. The coupling constant can be defined in the
time domain and by using it the cpu time substantially
decreases compared with the conventional FDTD
analysis. The principle and some examples are
presented to elucidate the physics of resonator
coupling together with the way to use it.

PRINCIPLE AND METHOD OF CALCULATION

Coupling between resonators or propagating waves
is often compared to coupled pendulums. The energy
in one oscillating system is transferred to the other
system through the coupling mechanism. It arises in
the time domain and space domain for resonators and
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Fig.1 Configuration for calculating the coupling
coefficient of two TE,,, modes via the FDTD method
in the frequency domain.

Table 1 Calculated value of coupling coefficient
and cpu time for frequency and time

domain FDTD analysis.
T k Cpu time (sec)
Freq. | 0.0314 | 163.5 (50000 steps) + 17.2 (FFT)
domain
Time | 0.0322 | 25.8 (10000 steps)
domain
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Fig.2 The output response for a Gaussian pulse
excitaion.

Now, the time domain calculation uses a Gaussian
modulated continuous wave as an excitation.

H, = sin(27f At -n)exp[—(At -n — 377 /1% 4

Therefore we need a rough idea for the resonant
frequency of the resonator, which is discussed later.
Figure 3 shows the analyzed structure which is of the
same dimension as Fig.1 except for the external W/Gs.
Time domain response in Fig.4 (a)(b) clearly expresses
the energy exchange between two resonators, though
they are the variation of electric field E,, more
precisely. We can calculate the coupling coefficient
from the period in Fig.4 and that in Fig.5 which shows
a part of Fig.4 (b) in an expanded time scale. In other
words, we do not need an integration to obtain the total
electromagnetic energy in each resonator, but need
only the one component of the electric field at any
place in a resonator. The calculation result is compared
with that of the frequency domain in Table 1. The cpu
time would decrease further if one notices the response
is already stable at 3000 th step in Fig.4.
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Fig.3 Configuration for calculating the coupling
coefficient in the time domain.
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Fig.4 The response of E, at the center of each resonator
in Fig.3 for a Gaussian modulated continuous wave .
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Fig.5 The expanded wave form of Fig 4 (b) along the
time axis.
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SOME OTHER EXAMPLES AND DISCUSSIONS

1) Different resonators of same resonant frequency

The coupled resonator system in Fig.6 is composed
of two same resonators but they are coupled at the side
wall 90 °  rotated. Therefore the equivalent LC circuit
(if obtained) looked inside from the coupling port
should be different each other. Hence, this system is
considered as the titled case. The computed result
(Fig.7) indicates that the energy exchange is
incomplete though the energy in Res.2 exchanges
completely. The present property is also analytically
obtained by two coupled different LC circuits of the
same resonant frequency. The coupling coefficient was
0.0423 for Fig.6.
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Fig.6 Coupling of two different resonators of the same
resonant frequency. '
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Fig.7 The response of E, at the center of each resonator
in Fig.6.

2) The case when center frequency of excitation is
shifted

The center frequency f; in eq.(4) is set exactly at the
average of the even and odd mode frequency for Fig.3.
However, we do not know the exact value but know a
roughly estimated value. Thus, one should evaluate the
error from the frequency shift. Figure 8 shows the
response at the center of Res.2 in Fig.3 when f; is 4.80
GHz, being 133 MHz higher than that for Fig.4.
Although the energy exchange is incomplete again, the
calculated k value was 0.0319, being only 1% lower
than that in Table 1.
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Fig.8 The response of E, at the center of Resonator 1
when the excitation frequency is shifted upwards.
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3) Coupling of degenerate modes

Two degenerate modes in a resonator couple each
other by a proper perturbation. A typical example is
shown in Fig.9 where TE,, and TE,; modes couple
by a square corner cut.[2] Figure 10 indicates that
complete energy exchange takes place between two
modes. The calculated k& value was 0.0183 for this
case.

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



excitation (H,)

a=40mm, ¢=50mm, ¢ = Smm

Fig.9 Coupling of two degenerate TE;y and TEoul'Gm’“‘L

modes in a rectangular waveguide resonator of square
cross section.
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Fig.10 The response at the center of the resonator in
Fig.9.

4) Coupling of microstrip resonators

Microstrip resonators shown in Fig.11 is a good
example for the planar structures. An experiment has
been carried out with the external lines as indicated in
the figure, resulting in such a loose coupling that [S,,|
is less then -30dB. The parameters for FDTD analysis
are fy=1.3 GHz, Ar=0.589 pS, 7=0.375 nS and

excitation is made by a current source close to the
open end of one resonator, deleting the external lines.
Both results are in good agreement as shown in Fig.12,
which verifies the FDTD analysis.
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Fig.11 Configuration of microstrip resonators.
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Fig.12 Change of coupling coefficient with respect to
the spacing of resonators.

CONCLUSION

Coupling coefficient of two resonators are obtained

numerically by the FDTD method. Taking the most of
the FDTD calculation, the definition in the time
domain is utilized, resulting in a simple and fast
estimation of coupling coefficients.
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